The correct option is A (A)→(P),(Q)
(A)
I=∫(x2+cos2x1+x2)cosec 2x dx
=∫(x2+1−sin2x1+x2)cosec 2x dx
=∫(cosec 2x−11+x2)dx
=−cotx+cot−1x+k
=−cosec xsecx+cot−1x+k
∴m=1,n=−1
(A)→(P),(Q)
(B)
I=∫√x+√x2+2 dx
Put √x2+2+x=t
⇒√x2+2−x=2t
∴2x=t−2t⇒2dx=(1+2t2)dt
I=12∫(√t+2t3/2)dt
⇒I=12t3/23/2+1−12√t+k
=13(x+√x2+2)3/2−2√x+√x2+2+k
∴m=1,n=2
(B)→(P),(R)
(C)
I=∫xtan−1x(1+x2)3/2dx=∫xtan−1x(1+x2)√1+x2dx
Put x=tanθ, where θ∈(−π2,π2)
⇒dx=sec2θ dθ
⇒dx1+x2=dθ
So, I=∫θtanθ√1+tan2θdθ
=∫θtanθsecθdθ
=∫θsinθ dθ
=−θcosθ+∫cosθ=−θcosθ+sinθ+k
Now, x=tanθ
⇒cosθ=1√1+x2 and sinθ=x√1+x2
∴I=x−tan−1x√1+x2
Hence, m=1,n=−1
(C)→(P),(Q)
(D)
∫sin2xsin4x+cos4xdx
Dividing numerator and denominator by cos4x,
I=∫2tanxsec2xtan4x+1dx
Put tan2x=t⇒2tanxsec2x dx=dt
∴I=∫dtt2+1
=tan−1(t)+k1
=−cot−1(t)+k, where k=π2+k1
=−cot−1(tan2x)+k
∴m=0,n=−1
(D)→(T),(Q)