The correct option is B (II)-(R)
(I)
I=∫20x4+1(x2+2)34dx
Multiplying numerator and denominator by x3
=∫20x7+x3(x8+2x4)34dxPut (x8+2x4)=tI=18∫2880dtt34=312×214=√3√2
(II) √1+(x−1)3 & 1+3√x2−1are inverse of each other in [1,3]I=∫31f(x)dx+∫31f−1(x)dxf−1(x)=tx=f(t)dx=f′(t)dt∫31f(x)dx+∫31tf11tdt∫31f(x)dx+[tf(t)]31−∫31f(t)dt=3f(3)−1.f(1)=3×3−1×1=8So, ∫31((√1+(x−1)3+(1+3√x2−1))−1)dx=8−2=6
(III) 2I=∫20(3√(x−1)3+5(x−1)+3√(1−x)3+5(1−x))dxI=0
(IV) Put x=πet
I=∫eπ(−(2πt−2tet))dt=−II=0