wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(a)If [.] denotes the greatest integer function and (p)1 f(x)={3[x]5|x|x; x0 2;x=0 then 232f(x)dx is equal to (b)The value ofπ2π2cos x1+exdx is(q)112(c)If I1=sinθ1x1+x2dx and I2=cscθ11x(x2+1)dx then(r)9the value of∣ ∣ ∣I1I21I2eI1+I2I2111I21+I221∣ ∣ ∣(d)Let f(x) be a polynomial of degree 2 satisfying(s)0 f(0)=1,f(0)=2 and f′′(0)=6,then21f(x)dx is equal to

A
(a)(p);(b)(q);(c)(r);(d)(s)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(a)(q);(b)(s);(c)(p);(d)(r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(a)(q);(b)(p);(c)(s);(d)(r)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(a)(p);(b)(q);(c)(s);(d)(r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C (a)(q);(b)(p);(c)(s);(d)(r)
(a) We have, f(x)=3[x]5, x>02, z=03[x]+5, x<0232f(x) dx=132(3[x]+5) dx+01(3[x]+5) dx+10(3[x]5) dx+21(3[x]5) dx=132(6+5)dx+01(3+5) dx+10(5) dx+21(35) dx=(1+32)+2(0+1)5(10)+(2)(21)=12+252=112

(b)
I=π2π2cosx1+ex dxI=π2π2cosx1+ex dx2I=π2π2cosxdx2I=1(1)I=1

(c) We have, I2=cscθ1xx2(x2+1) dx=sinθ1t1+t2dt where t=1xI2=I1∣ ∣ ∣I1I21I2eI1+I2I2111I21+I221∣ ∣ ∣=∣ ∣ ∣I1I21I1e0I21112I211∣ ∣ ∣=∣ ∣ ∣I1I21I11I2110I210∣ ∣ ∣ [Applying R3R3R2]=I21(I1+I1) [Expanding alongR3]=0

(d) Let f(x)=ax2+bx+c
Then f(0)=1c=1
Now, f(x)=2ax+b and f′′(x)=2a
f(0)=2 and f′′(0)=6
b=2 and a=3
f(x)=3x22x+121f(x) dx=21(3x22x+1) dx=[x3x2+x]21=(84+2)(111)=9

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon