The correct option is C (a)→(q);(b)→(p);(c)→(s);(d)→(r)
(a) We have, f(x)=⎧⎪⎨⎪⎩3[x]−5, x>02, z=03[x]+5, x<0∴∫2−32f(x) dx=∫−1−32(3[x]+5) dx+∫0−1(3[x]+5) dx+∫10(3[x]−5) dx+∫21(3[x]−5) dx=∫−1−32(−6+5)dx+∫0−1(−3+5) dx+∫10(−5) dx+∫21(3−5) dx=−(−1+32)+2(0+1)−5(1−0)+(−2)(2−1)=−12+2−5−2=−112
(b)
I=∫π2−π2cosx1+ex dx⇒I=∫π2−π2cosx1+e−x dx⇒2I=∫π2−π2cosxdx⇒2I=1−(−1)⇒I=1
(c) We have, I2=∫cscθ1xx2(x2+1) dx=−∫sinθ1t1+t2dt where t=1x⇒I2=−I1∴∣∣
∣
∣∣I1I21I2eI1+I2I21−11I21+I22−1∣∣
∣
∣∣=∣∣
∣
∣∣I1I21−I1e0I21−112I21−1∣∣
∣
∣∣=∣∣
∣
∣∣I1I21−I11I21−10I210∣∣
∣
∣∣ [Applying R3→R3−R2]=−I21(−I1+I1) [Expanding alongR3]=0
(d) Let f(x)=ax2+bx+c
Then f(0)=1⇒c=1
Now, f′(x)=2ax+b and f′′(x)=2a
∵f′(0)=−2 and f′′(0)=6
⇒b=−2 and a=3
∴f(x)=3x2−2x+1⇒∫2−1f(x) dx=∫2−1(3x2−2x+1) dx=[x3−x2+x]2−1=(8−4+2)−(−1−1−1)=9