The correct option is B a→r; b→p,q,s; c→,p,r; d→p,q,r,s.
a.
Since, A is idempotent,
A2=A3=A4=....=A.
Now,
(A+I)n=I+nC1A+nC2A2+...+nCnAn
=I+nC1A+nC2A+...+nCnA
=I+nC1A+nC2A+...+nCnA
=I+(nC1+nC2+...+nCn)A
=I+(2n−1)A
⇒ 2n−1=127
⇒ n=7
b.
We have,
(I−A)(I+A+A2+...+A7)
=I+A+A2+...+A7+(−A−A2−A3−A4....−A8)
=I−A8
=I (if A8=0)
c.
Here matrix A is skew-symmetric and since |A|=|AT|
⇒|A|=(−1)n|A|
⇒|A|(1−(−1)n)=0
As n is odd, hence |A|=0.
Hence, A is singular.
d.
If A is symmetric, A−1 is also symmetric for matrix of any order.