wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Column 1Column 2Column 3f(x)=3x313x2+14x2 has(I)cos(sin1(sin5π6))(i)1Pthree roots α, β, γ, then value of |sin(tan1α+tan1β+tan1γ)|=(II)cos(cos1(sin7π6))=(ii)12Q(3csc20sec20)8=(III)cos{tan1(tan15π4)}=(iii)12R42(sin12)(sin48)(sin54)=(IV)sin((cos1{12(cos9π10sin9π10)}+7π20)1×π2)(iv)32SIf the angles A, B and C of atriangle are in an arithmeticprogression and if a, b and c denotethe lengths of sides opposite to A, Band C respectively, then the valueof the expression12(acsin2C+casin2A) is
Which of the following options is only correct combination ?

A
(I), (iv), (S)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(I), (iv), (R)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(I), (iii), (S)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(I), (iii), (P)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (I), (iv), (S)
(I)cos(sin1(sin5π6))=cos(π6)=32(II)cos(cos1(sin7π6))=cos(π3)=12(III)cos(tan1(tan15π4))=cos(π4)=12(IV)sin((cos1{12(cos9π10sin9π10)}+7π20)1×π2)=sin((cos1(cos23π20)+7π20)1×π2)=sin((2π23π20+7π20)1×π2)=sin((24π20)1×π2)=sin(5π6)=12
(P)f(x)=3x313x2+14x2α, β, γ are the roots of f(x)α+β+γ=133αβ+βγ+γα=143αβγ=23

sin(tan1α+tan1β+tan1γ)=∣ ∣sin(tan1(133231143))∣ ∣=sin(tan1(1))=12

(Q)3csc20sec208=32cos2012sin204cos20sin20=sin60cos20cos60sin202(2sin20cos20)=sin402sin40=12

(R)42(sin12)(sin48)(sin54)=22(2sin12sin48)sin54=22[cos36cos60]sin54=22[cos3612]sin54=22[(5+14)212(5+14)]=12


(S)Since a,b,c are in A.P.B=60
12(acsin2C+ca(sin2A)=12(ac(2sinCcosC)+ca(2sinAcosA))=sinCc(acosC)+sinAa(ccosA)=12R(acosC+ccosA) [asinA=bsinB=csinC=2R]=b2R=sinB=32

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon