wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

List - IList - II(P)100k=1(1tan22kπ2100+1)2100 is1.1(Q)100k=1(1+2 cos 2π3k3100+1) is2.1(R)Let n be a positive integer and3. 2Let x be a real number differentfrom 2k+1,k=1,n,then[(1+2 cosx2100)100k=1(12 cosx2k)]2 cos x is equal to(S)The value ofn=112ntan(22n)+cot 2 is4.35.12

A
P2 Q1 R2 S4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
P2 Q1 R1 S5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
P4 Q2 R1 S3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
P4 Q2 R1 S2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B P2 Q1 R1 S5
(P) 1tan2 x=2 tan xtan 2x So(1tan22Kπ2100+1)=2 tan2kπ2100+1tan(2k+1π2100+1)
On multiplying
2 tan 2π2100+1tan(22π2100+1)×2 tan 22π2100+1tan(23π2100+1)××2 tan 2100π2100+1tan(2101π2100+1)2100
=/2100 tan(2π2100+1)/2100 tan(2101π2100+1)=tan(2π2101π2100+1)tan(2101π2100+1)=1

(Q) 1+2 cos 2ak=1+2(12 sin2 ak)
=34 sin2 ak
=sin 3aksin ak, where ak=3kx3nH
So 1k=1(1+2 cos 2π3k3100H)=sin 3a1sin a1×sin 3a2sin a2××sin 3a100sin a100
=sin(/32π/3100H)sin(3π3100H)×sin(33π3100H)sin(/32π/3100H)××sin(3101π3100H)sin(3100π3100H)
=sin(3101π3100H)sin(3π3100H)=1

(R) 12 cos a=14 cos2 a1+2 cos a=12(1+cos 2a)1+2 cos a=(1+2 cos 2a1+2 cos a)
So 100k=1(12 cos x2k)=(1+2 cos x1+2 cos x2)×(1+2 cos x21+2 cos x4)×(1+2 cos x299)(1+2 cos x2100)
=1+2 cos x1+2 cos x2100
So [(1+2 cos x2100)100k=1(12 cos x2k)]2 cos x=1

(S) tan x=cot x2 cot 2x
n=112n tan(22n)=12 tan(221)+122 tan(222)+123 tan(223)+
=12[cot /12 cot 2]+122[cot(12)/2 cot(1)]+123[cot 1222 cot(12)]+
=limn12n cot(22n)cot 2
=12cot 2
So, n=112n tan(x2n)+cot 2=12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon