The correct option is A 0
⎡⎢⎣b2c2bcb+cc2a2cac+aa2b2aba+b⎤⎥⎦
R1→a2R1,R2→b2R2,R3→c2R3
1a2b2c2⎡⎢
⎢⎣a2b2c2a2bca2(b+c)b2c2a2b2cab2(c+a)a2b2c2c2abc2(a+b)⎤⎥
⎥⎦
abc⎡⎢
⎢⎣1aa2(b+c)1bb2(c+a)1cc2(a+b)⎤⎥
⎥⎦
R1→R1−R2R2→R2−R3
abc⎡⎢
⎢⎣0a−ba(b+c)−b2(c+a)0b−cb2(c+a)−c2(a+b)1cc2(a+b)⎤⎥
⎥⎦
abc⎡⎢⎣0a−b(a−b)(ab+bc+ca)0b−c(b−c)(ab+bc+ca)1cc2(a+b)⎤⎥⎦
(abc)(a−b)(b−c)⎡⎢⎣01(ab+bc+ca)01(ab+bc+ca)1cc2(a+b)⎤⎥⎦
On expanding the determinant, we have
(abc)(a−b)(b−c)(ab+bc+ca−ab−bc−ca)=0