Evaluate: (64125)−23÷1(256625)14+((√25)3√64)
Now,(64125)−23÷1(256625)14+((√25)3√64)
=(4353)−23÷1(4454)14+(53√43)
Using (am)n=am×n, we get,
=(45)3×−23÷1(45)4×14+(54)
=(45)−2÷1(45)1+(54)
=(45)−2×54+(54)
Using (ab)−n=(ba)n
=(54)2×54+(54)
Using am×an=am+n
=(54)2+1+(54)
=(54)3+(54)
=(12564)+(54)
=(12564)+(54×1616)
=125+8064
=20564
Hence, (64125)−23÷1(256625)14+((√25)3√64)=31364