wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

∣ ∣ ∣1cosαcosβcosα1cosγcosβcosγ1∣ ∣ ∣=∣ ∣0cosαcosβcosα0cosβcosβcosγ0∣ ∣ if cos2α+cos2β+cos2γ=

A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 1
MISTAKE:in the determinant having 0's 3rd element in the second row must have cosγ instead of cosβ
∣ ∣ ∣1cosαcosβcosα1cosγcosβcosγ1∣ ∣ ∣=1(1cos2γ)cosα(cosαcosβcosγ)+cosβ(cosαcosγcosβ)
=1cos2αcos2βcos2γ+2cosαcosβcosγ
∣ ∣ ∣0cosαcosβcosα0cosγcosβcosγ0∣ ∣ ∣=0(0cos2γ)cosα(cosα(0)cosβcosγ)+cosβ(cosαcosγcosβ(0))
=2cosαcosβcosγ
Given ∣ ∣ ∣1cosαcosβcosα1cosγcosβcosγ1∣ ∣ ∣=∣ ∣ ∣0cosαcosβcosα0cosγcosβcosγ0∣ ∣ ∣

1cos2αcos2βcos2γ+2cosαcosβcosγ=2cosαcosβcosγ

cos2α+cos2β+cos2γ=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon