∣∣ ∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣ ∣∣=(a+b+c)3
∣∣ ∣∣x+y+2zxyzy+z+2xyzxz+x+2y∣∣ ∣∣=2(x+y+z)3
LHS=∣∣ ∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣ ∣∣=∣∣ ∣∣a+b+ca+b+ca+b+c2bb−c−a2b2c2cc−a−b∣∣ ∣∣ (using R1→R1+R2+R3)
Take out(a+b+c) common from R1, we get
=(a+b+c)∣∣
∣∣1112bb−c−a2b2c2cc−a−b∣∣
∣∣
=(a+b+c)∣∣ ∣∣1002b−b−c−a02c0−c−a−b∣∣ ∣∣ (using C2→C2−C1 and C3→C3−C1)
Expanding along R1. we get
=(a+b+c)[1(−b−c−a)(−c−a−b)]=(a+b+c)[−(b+c+a)×(−)(c+a+b)]=(a+b+c)(a+b+c)(a+b+c)=(a+b+c)3=RHS Hence proved.
LHS=∣∣
∣∣x+y+2zxyzy+z+2xyzxz+x+2y∣∣
∣∣=∣∣
∣
∣∣2(x+y+z)xy2(x+y+z)y+z+2xy2(x+y+z)xz+x+2y∣∣
∣
∣∣
(using C1→C1+C2+C3)
Take out 2(x+y+z) common from C1, we get
=2(x+y+z)∣∣
∣∣1xy1y+z+2xy1xz+x+2y∣∣
∣∣
=2(x+y+z)∣∣
∣∣1xy0y+z+x000z+x+y∣∣
∣∣ (using R2→R2−R1,R3→R3−R1)
Take out (x+y+z) common from R2 and R3, we get
=2(x+y+z)(x+y+z)(x+y+z)∣∣
∣∣1xy010001∣∣
∣∣
Expanding along R3, we get
=2(x+y+z)3[(1)(1−0)]=2(x+y+z)3=RHS.