∣∣ ∣ ∣∣a2+1abacabb2+1bccacbc2+1∣∣ ∣ ∣∣=1+a2+b2+c2
The determinant ∣∣ ∣ ∣∣b2−abb−cbc−acab−a2a−bb2−abbc−acc−aab−a2∣∣ ∣ ∣∣ equals to:
(a) abc(b-c)(c-a)(a-b) (b) (b-c)(c-a)(a-b) (c) (a+b+c)(b-c)(c-a)(a-b) (d) None of these
Find x : x−b−ca+x−c−ab+x−a−bc=3, if 1a+1b+1c≠0