∣∣
∣
∣∣(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2∣∣
∣
∣∣=(b+c)2[(c+a)2×(a+b)2−b2×c2]−a2[b2×(a+b)2−b2×c2]+a2[b2c2−c2(c+a)2]=b2+c2+2ab[(c2+a2+2ac)×(a2+b2+2ab)−b2c2]−a2[b2×(a2+b2+2ab)−b2c2]+a2[b2c2−c2(c2+a2+2ac)]onsolvingandtakingcomonweget=2abc(a2+b2+c2+2ab+2bc+2ca)2=2abc(a+b+c)2proved