∣∣
∣
∣∣sin223sin267cos180sin267sin223cos2180cos180sin223sin267∣∣
∣
∣∣
cos 180=1
=∣∣
∣
∣∣sin223sin2(90−23)−1sin267sin2(90−67)(−1)2−1sin223sin2(90−23)∣∣
∣
∣∣
=∣∣
∣
∣∣sin223cos223−1sin267cos2671−1sin223cos223∣∣
∣
∣∣C1→C1+C2+C3
=∣∣
∣
∣∣1−1COS223−12cos2671−1+1sin223cos223∣∣
∣
∣∣=∣∣
∣
∣∣0cos223−12cos26710sin223cos223∣∣
∣
∣∣
=−cos223(2cos223−0)−1(2sin223)=−2cos423−2sin223=−2[cos423+sin223]