The correct option is
A None of these
∣∣
∣
∣
∣
∣∣sinθcosθtanθsin(θ+2π3)cos(θ+2π3)sin(2θ+4π3)sin(θ−2π3)cos(θ−2π3)sin(2θ−4π3)∣∣
∣
∣
∣
∣∣
R2→R2+R3
=∣∣
∣
∣
∣
∣∣sinθcosθtanθsin(θ+2π3)+sin(θ−2π3)cos(θ+2π3)+cos(θ−2π3)sin(2θ+4π3)+sin(2θ−4π3)sin(θ−2π3)cos(θ−2π3)sin(2θ−4π3)∣∣
∣
∣
∣
∣∣
We know that sinC+sinD=2sin(C+D2)cos(C−D2)
and cosC+cosD=2cos(C+D2)cos(C−D2)
=∣∣
∣
∣
∣
∣∣sinθcosθtanθ2sinθcos2π32cosθcos2π32sin2θcos4π3sin(θ−2π3)cos(θ−2π3)sin(2θ−4π3)∣∣
∣
∣
∣
∣∣
We know that sin(−θ)=−sinθ and cos(−θ)=cosθ
=∣∣
∣
∣
∣
∣∣sinθcosθtanθ2sinθcos2π32cosθcos2π32sin2θcos4π3−sin(2π3−θ)cos(2π3−θ)−sin(4π3−2θ)∣∣
∣
∣
∣
∣∣
=∣∣
∣
∣
∣
∣∣sinθcosθtanθ2sinθcos(π−π3)2cosθcos(π−π3)2sin2θcos(π+π3)−sin(π−π3−θ)cos(π−π3−θ)−sin(π+π3−2θ)∣∣
∣
∣
∣
∣∣
We know that sin(π−θ)=sinθ,cos(π−θ)=−cosθ,sin(π+θ)=−sinθ,cos(π+θ)=cosθ
=∣∣
∣
∣
∣
∣∣sinθcosθtanθ−2sinθcosπ3−2cosθcosπ32sin2θcosπ3−sin(π−(π3+θ))cos(π−(π3+θ))−sin(π+(π3−2θ))∣∣
∣
∣
∣
∣∣
=∣∣
∣
∣
∣
∣∣sinθcosθtanθ−2sinθcosπ3−2cosθcosπ32sin2θcosπ3−sin(π3+θ)−cos(π3+θ)sin(π3−2θ)∣∣
∣
∣
∣
∣∣
We know that cosπ3=12
=∣∣
∣
∣
∣
∣∣sinθcosθtanθ−2sinθ×12−2cosθ×122sin2θ×12−sin(π3+θ)−cos(π3+θ)sin(π3−2θ)∣∣
∣
∣
∣
∣∣
=∣∣
∣
∣
∣∣sinθcosθtanθ−sinθ−cosθsin2θ−sin(π3+θ)−cos(π3+θ)sin(π3−2θ)∣∣
∣
∣
∣∣
R1→R1+R2
=∣∣
∣
∣
∣∣00tanθ+sin2θ−sinθ−cosθsin2θ−sin(π3+θ)−cos(π3+θ)sin(π3−2θ)∣∣
∣
∣
∣∣
=0−0+(tanθ+sin2θ)(sinθcos(π3+θ)−cosθsin(π3+θ))
We know that sin(A−B)=sinAcosB−cosAsinB
=(tanθ+sin2θ)sin(θ−π3−θ)
=−(tanθ+sin2θ)sinπ3
=−√32(tanθ+sin2θ)