In △DEF,
∠D=∠EDF
But ∠EDF=∠EDA+∠FDA ....angle addition property
Now, ∠EDA=∠EBA and ∠FDA=∠FCA .....Angles inscribed in the same arc
∴∠EDF=∠EBA+∠FCA
=12∠B+12∠C
[Since BE is bisector of ∠B and CF is bisector ∠C]
∴∠D=∠B+∠C2 ....(1)
Similarly,∠E=∠C+∠A2 and ∠F=∠A+∠B2 ...(2)
Now, ∠A+∠B+∠C=180o ....angle sum property of triangle
∴∠B+∠C=180∘−∠A ...(3)
Similarly, ∠C+∠A=180o−∠B and ∠A+∠B=180o−∠C ...(4)
Substituting eq (3) in eq (1), we get
∴∠D=180o−∠A2
∠D=90o−12∠A
Similarly, ∠E=90o−12∠B and ∠F=90o−12∠C