We have,
Given that, BE is the bisector of B.
∴∠ABE=∠B2
∠ADE=∠ABE (Angles in the same segment for chord AF)
Similarly, ∠ACF=∠ADF=∠C2 (Angle in the same segment for chord AF )
∠D=∠ADE+∠ADF
∠D=∠B2+∠C2
=12(∠B+∠C)
=12(180o−∠A)(∴∠A+∠B+∠C=180o)
∠D=90o−∠A2
Hence, this is the answer.