wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

BL and CM are medians of triangle ABC right angled at A , prove 4(BL2+CM2)=5BC2
1052549_78b3ae21a19e457a9d9325c7244ca5ab.png

Open in App
Solution

Let ABC be a right angle triangle whose angle A is right angle

Let L and M be the middle point side AC and AB respectively.

In ΔACM,

By Pythagoras theorem ,

[(Hypotenuse)2=(Base)2+(Height)2

CM2=AC2+AM2

=AC2+(12AB)2

CM2=AC2+14AB2 .....(1)

In ΔABL,

By Pythagoras theorem ,

(Hypotenuse)2=(Base)2+(Height)2

BL2=AB2+AL2

=AB2+(12AC)2

BL2=AB2+14AC2 .....(2)

Adding equation (1) and (2) to,

CM2+BL2=AC2+14AB2+AB2+14AC2

CM2+BL2=(AC2+AB2)+(14AB2+14AC2)

CM2+BL2=BC2+14(AB2+AC2)

Where AC2+AB2 =BC2

CM2+BL2=BC2+14BC2

CM2+BL2=5BC24

4(CM2+BL2)=5BC2

Hence proved.


997629_1052549_ans_f6975bf1eff14c8290fbba2de51a80ba.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Altitude of a triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon