Let ABC be a right angle triangle whose angle A is right angle
Let L and M be the middle point side AC and AB respectively.
In ΔACM,
By Pythagoras theorem ,
[(Hypotenuse)2=(Base)2+(Height)2
CM2=AC2+AM2
=AC2+(12AB)2
CM2=AC2+14AB2 .....(1)
In ΔABL,
By Pythagoras theorem ,
(Hypotenuse)2=(Base)2+(Height)2
BL2=AB2+AL2
=AB2+(12AC)2
BL2=AB2+14AC2 .....(2)
Adding equation (1) and (2) to,
CM2+BL2=AC2+14AB2+AB2+14AC2
CM2+BL2=(AC2+AB2)+(14AB2+14AC2)
CM2+BL2=BC2+14(AB2+AC2)
Where AC2+AB2 =BC2
CM2+BL2=BC2+14BC2
CM2+BL2=5BC24
4(CM2+BL2)=5BC2
Hence proved.