The correct option is D 3
Let P(n)=12+32+52⋯+(2n−1)2∀n∈N
So, it is also true for n=1,
P(1)=1
From RHS, we have P(1)=1x1.3=1
Hence on comparing we have x=3
Let, P(k):12+32+52⋯+(2n−1)2∀n∈N is true for k=n
now check at k=n+1,
P(n+1):12+22+32+⋯+(2k−1)2+(2k+1)2=n3[4n2−1]+(2n+1)2=13[4n3−n+12n2+12n+3]=(n+1)3[4n2+8n+3]=(n+1)3[4(n+1)2−1]
So, P(n+1) is also true.