The correct option is B 2
Let P(n)=13+33+53⋯n terms∀n∈N
so, it is also true for n=1
P(1)=1
From RHS, we have P(1)=1.(x−1)=1
Hence on comparing we have x=2
Now, let P(n):13+33+53⋯n terms∀n∈N is true
Check at n=n+1
P(n+1):13+33+53⋯+(2n−1)3+(2n+1)3=n2(2n2−1)+(2n+1)3
on expanding we get,
P(n+1)=2n4+8n3+11n2+6n+1 =(n+1)2[2(n+1)2−1]
So, P(n+1) is true.