wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By principle of mathematical Induction show that an​​​​​​-bn is divisible by a+b when n is a positive integer.

Open in App
Solution

Using the principle of mathematical induction, prove that (xn - yn) is divisible by (x - y)for all n ∈ N. Solution:

Let the given statement be P(n). Then,

P(n): (xn - yn) is divisible by (x - y).

When n = 1, the given statement becomes: (x1 - y1) is divisible by (x - y), which is clearly true.

Therefore P(1) is true.

Let p(k) be true. Then,

P(k): xk - yk is divisible by (x-y).

Now, xk + 1 - yk + 1 = xk + 1 - xky - yk + 1

[on adding and subtracting x)ky]

= xk(x - y) + y(xk - yk), which is divisible by (x - y) [using (i)]

⇒ P(k + 1): xk + 1 - yk + 1is divisible by (x - y)

⇒ P(k + 1) is true, whenever P(k) is true.

Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.

Hence, by the Principal of Mathematical Induction, P(n) is true for all n ∈ N.

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon