1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Multiplication of Matrices
by property o...
Question
by property of determinant
a b-c c+b
a+c b c-a
a-b b+a c =(a+b+c)(a^2+b^2+c^2)
Open in App
Solution
Let
∆
=
a
b
-
c
c
+
b
a
+
c
b
c
-
a
a
-
b
a
+
b
c
Apply
C
1
=
aC
1
;
C
2
=
bC
2
;
C
3
=
cC
3
and
divide
the
∆
by
abc
,
we
get
∆
=
1
abc
a
2
b
2
-
bc
c
2
+
bc
a
2
+
ac
b
2
c
2
-
ac
a
2
-
ab
ab
+
b
2
c
2
Applying
C
1
=
C
1
+
C
2
+
C
3
,
we
get
∆
=
1
abc
a
2
+
b
2
+
c
2
b
2
-
bc
c
2
+
bc
a
2
+
b
2
+
c
2
b
2
c
2
-
ac
a
2
+
b
2
+
c
2
ab
+
b
2
c
2
⇒
∆
=
a
2
+
b
2
+
c
2
abc
1
b
2
-
bc
c
2
+
bc
1
b
2
c
2
-
ac
1
ab
+
b
2
c
2
Applying
R
1
=
R
1
-
R
2
and
R
2
=
R
2
-
R
3
,
we
get
⇒
∆
=
a
2
+
b
2
+
c
2
abc
0
-
bc
bc
+
ac
0
-
ab
-
ac
1
ab
+
b
2
c
2
⇒
∆
=
a
2
+
b
2
+
c
2
abc
1
abc
2
+
ab
bc
+
ac
⇒
∆
=
a
2
+
b
2
+
c
2
abc
abc
2
+
ab
2
c
+
a
2
bc
⇒
∆
=
a
2
+
b
2
+
c
2
abc
×
abc
c
+
b
+
a
⇒
∆
=
a
2
+
b
2
+
c
2
a
+
b
+
c
Suggest Corrections
0
Similar questions
Q.
Prove that
∣
∣ ∣ ∣
∣
a
2
a
2
−
(
b
−
c
)
2
b
c
b
2
b
2
−
(
c
−
a
)
2
c
a
c
2
c
2
−
(
a
−
b
)
2
a
b
∣
∣ ∣ ∣
∣
=
(
b
−
c
)
(
c
−
a
)
(
a
−
b
)
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
)
.
Q.
Find the value of
a
2
−
b
2
−
c
2
(
a
−
b
)
(
a
−
c
)
+
b
2
−
c
2
−
a
2
(
b
−
c
)
(
b
−
a
)
+
c
2
−
a
2
−
b
2
(
c
−
a
)
(
c
−
b
)
.
Q.
Using properties of determinants, prove that :
∣
∣ ∣
∣
a
b
−
c
c
+
b
a
+
c
b
c
−
a
a
−
b
b
+
a
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
)
Q.
Prove the following identity:
a
(
b
−
c
)
2
(
c
−
a
)
(
a
−
b
)
+
b
(
c
−
a
)
2
(
a
−
b
)
(
b
−
c
)
+
c
(
a
−
b
)
2
(
b
−
c
)
(
c
−
a
)
=
a
+
b
+
c
.
Q.
Given
a
2
+
b
2
=
c
2
&
a
>
0
;
b
>
0
;
c
>
0
,
c
−
b
≠
1
,
c
+
b
≠
1
,
Then :
log
c
+
b
a
+
log
c
−
b
a
is equal to
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Multiplication of Matrices
MATHEMATICS
Watch in App
Explore more
Multiplication of Matrices
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app