By the method of matrix inversion, solve the system. ⎡⎢⎣11125721−1⎤⎥⎦⎡⎢⎣x1y1x2y2x3y3⎤⎥⎦=⎡⎢⎣9252150−1⎤⎥⎦. Find x1+y3
Open in App
Solution
⎡⎢⎣11125721−1⎤⎥⎦⎡⎢⎣x1y1x2y2x3y3⎤⎥⎦=⎡⎢⎣92521501⎤⎥⎦⇒AX=B (1) Clearly |A|=−4≠0. Therefore, adjA=⎡⎢⎣−1216−82−312−53⎤⎥⎦T=⎡⎢⎣−122216−3−5−813⎤⎥⎦ ∴A−1=adj.A|A|=−14⎡⎢⎣−122216−3−5−813⎤⎥⎦ Now, A−1B=−14⎡⎢⎣−122216−3−5−813⎤⎥⎦⎡⎢⎣9252150−1⎤⎥⎦ =−14⎡⎢⎣−44−12−8−20−4⎤⎥⎦=⎡⎢⎣1−13251⎤⎥⎦ From Equation (1), we get X=A−1B⇒⎡⎢⎣x1y1x2y2x3y3⎤⎥⎦=⎡⎢⎣1−13251⎤⎥⎦ ⇒x1=1,x2=3,x3=5 or y1=−1,y2=2,y3=1