Consider the system of equations
3x+4y+5z=18
2x−y+8z=13
5x−2y+7z=20
Cramer's rule is applicable when determinant≠0
D=∣∣
∣∣3452−185−27∣∣
∣∣
=3(−7+16)−4(14−40)+5(−4+5)
=27+104+5=136≠0
∴ Cramer's rule is aplicable.
Dx=∣∣
∣∣184513−1820−27∣∣
∣∣ by replacing the coefficents of C1 by the Constants.
=18(−7+16)−4(91−160)+5(−26+20)
=81+276−30=321
Dy=∣∣
∣∣318521385207∣∣
∣∣by replacing the coefficents of C2 by the Constants.
=3(91−160)−18(35−40)+5(40−65)
=−207+90−125=−242
Dz=∣∣
∣∣34182−1135−220∣∣
∣∣by replacing the coefficents of C3 by the Constants.
=3(−20+26)−4(40−65)+8(−10+5)
=18+100−40=78
The values of x,y,z are calculated as
x=DxD=321136
y=DyD=−242136=−12168
z=DzD=78136=3968