By using properties of definite integrals, evaluate the integrals
∫20x√2−xdx.
Let ∫20x√2−xdx.
Also, I=∫20(2−x)√2−(2−x)dx=∫20(2−x)√xdx=∫20(2x12−x32)dx=[2x(12)+1(12)+1−x(32)+1(32)+1]20=[43x32−25x52]20=43.232−25.252−0=432√2−254√2=(83−85)√2=(40−2415)√2=16√215