By using properties of definite integrals, evaluate the integrals
∫40|x−1|dx.
Let ∫40|x−1|dx
It can be seen that, (x−1)≤0 when~ 0≤x≤1 and (x−1)≥0~when 1≤x≤4
∴I=∫10|x−1|dx+∫40|x−1|dx [∵∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx]=∫10(1−x)dx+∫41(x−1)dx=[x−x22]10+[x22−x]41=(1−12)−0+(422−4)−(12−1)=12+4+12=5