CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using properties of definite integrals, evaluate the integrals
π20(2log sinxlog sin2x)dx.

Open in App
Solution

LetI=π20(2log sinxlog sin2x)dx=π20(log sin2xlog sin2x)dx=π20(sin2xsin2x)dx[logmlogn=logmn]=π20log(sin2x2sinxcosx)dx[sin2x=2sinxcosx]=π20log(tanx2)dx=π20log(tanx)log2dx=π20log(tanx)dxπ20log2dxI=I1(log2)[x]π20=I1(π20)log2
WhereI1π20log(tanx)dxI1=π20log(tan(π2x))dx[I=a0f(x)dx=a0f(ax)dx]I1=π20log(cotx)dx
on adding eqs. (ii) and (iii) we get
2I1=π20(log(tanx)+log(cotx))dx=π20log(tanxcotx)dx [logm+logn=log(mn)]=π20log1dx=0I1=0(tanx=1cotx)
on putting th evalue of I1 in Eq (i) we get I=0π2log2=π2log2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating One Function wrt Other
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon