By using properties of definite integrals, evaluate the integrals
∫π20(2log sinx−log sin2x)dx.
LetI=∫π20(2log sinx−log sin2x)dx=∫π20(log sin2x−log sin2x)dx=∫π20(sin2xsin2x)dx[∵logm−logn=logmn]=∫π20log(sin2x2sinxcosx)dx[∵sin2x=2sinxcosx]=∫π20log(tanx2)dx=∫π20log(tanx)−log2dx=∫π20log(tanx)dx−∫π20log2dx⇒I=I1−(log2)[x]π20=I1−(π2−0)log2
WhereI1∫π20log(tanx)dx⇒I1=∫π20log(tan(π2−x))dx[∵I=∫a0f(x)dx=∫a0f(a−x)dx]⇒I1=∫π20log(cotx)dx
on adding eqs. (ii) and (iii) we get
2I1=∫π20(log(tanx)+log(cotx))dx=∫π20log(tanxcotx)dx [∵logm+logn=log(mn)]=∫π20log1dx=0⇒I1=0(∵tanx=1cotx)
on putting th evalue of I1 in Eq (i) we get I=0−π2log2=−π2log2