CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
249
You visited us 249 times! Enjoying our articles? Unlock Full Access!
Question

By using properties of definite integrals, evaluate the integrals
π20(2log sinxlog sin2x)dx.

Open in App
Solution

LetI=π20(2log sinxlog sin2x)dx=π20(log sin2xlog sin2x)dx=π20(sin2xsin2x)dx[logmlogn=logmn]=π20log(sin2x2sinxcosx)dx[sin2x=2sinxcosx]=π20log(tanx2)dx=π20log(tanx)log2dx=π20log(tanx)dxπ20log2dxI=I1(log2)[x]π20=I1(π20)log2
WhereI1π20log(tanx)dxI1=π20log(tan(π2x))dx[I=a0f(x)dx=a0f(ax)dx]I1=π20log(cotx)dx
on adding eqs. (ii) and (iii) we get
2I1=π20(log(tanx)+log(cotx))dx=π20log(tanxcotx)dx [logm+logn=log(mn)]=π20log1dx=0I1=0(tanx=1cotx)
on putting th evalue of I1 in Eq (i) we get I=0π2log2=π2log2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating One Function wrt Other
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon