By using properties of definite integrals, evaluate the integrals ∫π20cos2dx.
Let I=∫π20cos2xdx⇒I=∫π20cos2(π2−x)dx⇒I=∫π20sin2xdx On adding Eqs. (i) and (ii) , we get 2I=∫π20(sin2x+cos2x)dx=∫π20dx [∵sin2x+cos2x=1]=[x]π20=π2−0⇒I=π4
By using properties of definite integrals, evaluate the integrals ∫π40log(1+tanx)dx.
By using properties of definite integrals, evaluate the integrals ∫π20cos5xsin5x+cos5xdx.
By using properties of definite integrals, evaluate the integrals ∫π20sinxcosx1+sinxcosxdx.