By using properties of definite integrals, evaluate the integrals
∫π20sin32sin32x+cos32xdx.
∫π20sin32sin32x+cos32xdx.⇒I=∫π20sin32(π2−x)sin32(π2−x)+cos32(π2−x)dx (∵∫a0f(x)dx=∫a0f(a−x)dx)=∫π20cos32xcos32x+sin32X[∵sin(π1−X)=cos x and cos(pi2−x)=sinx]
on adding Eqs. (i) and (ii), we get
2I=∫π20sin32+cos32sin32+cos32xdx=∫π201dx=[x]π20=π2−0⇒I=π4