wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using properties of definite integrals, evaluate the integrals
π20sin32sin32x+cos32xdx.

Open in App
Solution

π20sin32sin32x+cos32xdx.I=π20sin32(π2x)sin32(π2x)+cos32(π2x)dx (a0f(x)dx=a0f(ax)dx)=π20cos32xcos32x+sin32X[sin(π1X)=cos x and cos(pi2x)=sinx]
on adding Eqs. (i) and (ii), we get
2I=π20sin32+cos32sin32+cos32xdx=π201dx=[x]π20=π20I=π4


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integrals of Mixed Powers of Sine and Cosine
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon