By using properties of definite integrals, evaluate the integrals
∫π20cos5xsin5x+cos5xdx.
I =∫π20cos5xsin5x+cos5xdx..........(i)⇒I=∫π20cos5(π2−x)sin5(π2−x)+cos5(π2−x)[∵∫a0f(x)dx=∫a0f(a−x)dx]=∫π20sin5xcos5x+sin5xdx.........(ii)
On adding Eqs. (i) and (ii) we get
2I = ∫π20cos5x+sin5xsin5x+cos5xdx=∫π201dx=π2−0→I=π4