By using properties of definite integrals, evaluate the integrals
∫π20sinxcosx1+sinxcosxdx.
Let I=∫0π2sinxcosx1+sinxcosxdx.
⇒I=∫π20sin(π2−x)−cos(π2−x)1+sin(π2−x)cos(π2−x)dx.[∵∫a0f(x)dx=∫a0f(a−x)dx]=∫π20cosx−sinx1+coxsinx(∵sin(π2−x)=cosx and cos(π2−x)=sinx)
On adding Eqs, (i) and (ii) we get
2I=∫π2001+sinxcosxdx=0⇒I=0