wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using properties of definite integrals, evaluate the integrals
π40log(1+tanx)dx.

Open in App
Solution

Let I=π40log(1+tanx)dxI=π40log[1+tan(π4x)]dx[a0f(x)dx=a0f(ax)dx]=fI0π4log(1+1tanx1+tanx)dx[tan(AB)=tanAtanB1+tanAtanB,hereA=π4,B=x]=π40log(21+tanx)dx=π40{log2log(1+tanx)}dx[log(mn)=logmlogn]

On adding Eqs. (i) and (ii), we get
2I=π40log2dx=log2π401dx=log2[x]π40=(log2)(π40)2I=π4log2I=π8log2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon