By using properties of definite integrals, evaluate the integrals
∫π40log(1+tanx)dx.
Let I=∫π40log(1+tanx)dx⇒I=∫π40log[1+tan(π4−x)]dx[∵∫a0f(x)dx=∫a0f(a−x)dx]=fI0π4log(1+1−tanx1+tanx)dx[∵tan(A−B)=tanA−tanB1+tanAtanB,hereA=π4,B=x]=∫π40log(21+tanx)dx=∫π40{log2−log(1+tanx)}dx[∵log(mn)=logm−logn]
On adding Eqs. (i) and (ii), we get
2I=∫π40log2dx=log2∫π401dx=log2[x]π40=(log2)(π4−0)⇒2I=π4log2⇒I=π8log2