wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using properties of definite integrals, evaluate the integrals
π0x1+sinxdx.

Open in App
Solution

Let I=π0x1+sinxdx........(i)
Then I=π0πx1+sin(πx)dx[(a0f(x)dx=00f(ax)dx]
I=π0πx1+sinxdx.......(ii)
on adding Eqs. (i) and (ii) we get
2I =π0π(1+sinx)dx=ππ01sinx(1+sinx)(1sinx)dx
(Multiply numerator and denominator by (1- sin x))
2I=ππ01sinx1sin2xdx
=ππ01cos2xdxπn0sinxcos2x [sin2x+cos2x=1]
2I=ππ0sec2xdxππ0secxtanxdx
2I=π[tanxsecx]π02I=π[tanπsecπ(tan0sec0)]
2I=π[0+10+1]2I=2πI=π


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon