By using properties of definite integrals, evaluate the integrals
∫π0x1+sinxdx.
Let I=∫π0x1+sinxdx........(i)
Then I=∫π0π−x1+sin(π−x)dx[∵(∫a0f(x)dx=∫00f(a−x)dx]
⇒I=∫π0π−x1+sinxdx.......(ii)
on adding Eqs. (i) and (ii) we get
2I =∫π0π(1+sinx)dx=π∫π01−sinx(1+sinx)(1−sinx)dx
(Multiply numerator and denominator by (1- sin x))
⇒2I=π∫π01−sinx1−sin2xdx
=π∫π01cos2xdx−π∫n0sinxcos2x [∵sin2x+cos2x=1]
⇒2I=π∫π0sec2xdx−π∫π0secxtanxdx
⇒2I=π[tanx−secx]π0⇒2I=π[tanπ−secπ−(tan0−sec0)]
⇒2I=π[0+1−0+1]⇒2I=2π⇒I=π