By using properties of definite integrals, evaluate the integrals
∫82|x−5|dx.
Let ∫82|x−5|dx.
It can be seen that(x−5)≤0 on [2,5] and (x−5)≥0 on [5,8].∵∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx∴I=∫52{−(x−5)}dx+∫85(x−5)dx=[5x−x22]52+[x22−5x]85=(25−252)−(10−42)+(642−40)−(252−25)=252−8−8+252=25−16=9