By using properties of definite integrals, evaluate the integrals
∫5−5|x+2|dx.
Let ∫5−5|x+2|dx.
It can be seen that (x+2)≤0 on [−5,−2] and (x+2)≥0 on [−2,5].∴I=∫−2−5−(x+2)dx+∫5−2(x+2)dx[∵∫baf(x)dx=∫baf(x)dx+∫bcf(x)dx]⇒I=−[x22+2x]−2−5+[x22+2x]5−2=−[(−2)22+2(−2)−(−5)22−2(−5)]+[(5)22+2(5)−(−2)22−2(−2)]=−[2−4−252+10]+[252+10−2+4]=−2+4+252−10+252+−2+4=29