∣∣
∣
∣∣(y+z)2xyzxxy(x+z)2yzxzyz(x+y)2∣∣
∣
∣∣multiply R1,R2,R3 by x,y,z
1xyz∣∣
∣
∣∣x(y+z)2xy2zx2x2y(x+z)2y2zxz2yz2(x+y)2∣∣
∣
∣∣=xyzxyz∣∣
∣
∣∣(y+z)2x2x2y2(x+z)2y2z2z2(x+y)2∣∣
∣
∣∣
applying C1→→C1−C3
and C2→C2−C3
=∣∣
∣
∣∣(y+2)2−x20x20(x+z)2−y2y2z2−(x+y)2Z2−(x+y)2(x+y)2∣∣
∣
∣∣
=∣∣
∣
∣∣(y+z+x)(y+z−x)0x20(x+2+y)(x+z−y)y2(z−x−y)(z+x+y)(z−x−y)(z+x+y)(x+y)2∣∣
∣
∣∣
Taking (x+y+z) common from C1 and C2
=(x+y+z)2∣∣
∣
∣∣(y+z−x)0x20(x+z−y)y2−2y−2x2xy∣∣
∣
∣∣
Taking x,y 2xy common R1,R2 and R3
=(x+y+z)2xy×x×y×zxy∣∣
∣∣y+zxxyx+zy001∣∣
∣∣
=2xy(x+y+z)2∣∣
∣∣y+zxxyx+zy001∣∣
∣∣
Expending along R3→
=2xy(x+y+z)2[(y+z)(x+z)−xy]
=2xy(x+y+z)2[xy+yz+zx+z2−xy]
=2xy(x+y+z)2[z(x+y+z)]
=2xyz(x+y+z)3