wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using properties of determinants, show that:

Open in App
Solution

The given left hand side determinant is,

Δ=| 1 x x 2 x 2 1 x x x 2 1 |

Apply row operation R 1 R 1 + R 2 + R 3 ,

Δ=| 1+ x 2 +x x+1+ x 2 x 2 +x+1 x 2 1 x x x 2 1 | =( 1+ x 2 +x )| 1 1 1 x 2 1 x x x 2 1 |

Apply column operation C 1 C 1 C 2 ,

Δ=( 1+ x 2 +x )| 11 1 1 x 2 1 1 x x x 2 x 2 1 | =( 1+ x 2 +x )( x1 )| 0 1 1 x+1 1 x x x 2 1 |

Apply column operation C 2 C 2 C 3 ,

Δ=( 1+ x 2 +x )( x1 )| 0 11 1 x+1 1x x x x 2 1 1 | =( 1+ x 2 +x )( x1 )( x1 )| 0 0 1 x+1 1 x x x+1 1 |

Expand along R 1 ,

Δ= ( x1 ) 2 ( 1+x+ x 2 )[ 00+ ( x+1 ) 2 x ] = ( x1 ) 2 ( 1+x+ x 2 )[ 1+x+ x 2 ] = ( x1 ) 2 ( 1+x+ x 2 ) 2 = ( 1 3 x 3 ) 2

Hence, the left hand side of the determinant is equal to the right hand side.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon