By usingproperties of determinants, show that:
(i)∣∣
∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣
∣∣=(a+b+c)3
(ii)∣∣ ∣∣x+y+2zxyzy+z+2xyzxz+x+2y∣∣ ∣∣=2(x+y+c)3
(i) LHS=∣∣ ∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣ ∣∣
Applying R1 → R1+ R2 + R3, we have:
=∣∣
∣∣a+b+ca+b+ca+b+c2bb−c−a2b2c2cc−a−b∣∣
∣∣
=(a+b+c)∣∣
∣∣1112bb−c−a2b2c2cc−a−b∣∣
∣∣
Applying C2 → C2− C1, C3 →C3 − C1, we have:
=(a+b+c)∣∣
∣∣1002b−b−c−a02c0−c−a−b∣∣
∣∣
=(a+b+c)3∣∣
∣∣1002b−102c0−1∣∣
∣∣
Expanding along first row, we have:
=(a+b+c)3[1((−1)(−1)−0)]
=(a+b+c)3
=RHS.
Hence, the given result is proved.
(ii) Given ∣∣
∣∣x+y+2zxyzy+z+2xyzxz+x+2y∣∣
∣∣
Applying C1 → C1+ C2 + C3, we have:
=∣∣
∣∣2x+2y+2zxy2x+2y+2zy+z+2xy2x+2y+2zxz+x+2y∣∣
∣∣
=(2x+2y+2z)∣∣
∣∣1xy1y+z+2xy1xz+x+2y∣∣
∣∣
Applying R2 → R2− R1 and R3 →R3 − R1, we have:
=2(x+y+z)∣∣
∣∣1xy0y+z+x000z+x+y∣∣
∣∣
=2(x+y+z)3∣∣
∣∣1xy010001∣∣
∣∣
Expanding along R3, we have:
=2(x+y+z)3(1)(1−0)
=2(x+y+z)3
Hence, the given result is proved.