1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Derivative of a Determinant
By using prop...
Question
By using properties of determination, show that
∣
∣ ∣
∣
a
−
b
−
c
2
a
2
a
2
b
b
−
c
−
a
2
b
2
c
2
c
c
−
a
−
b
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
3
Open in App
Solution
R
1
⇒
R
1
+
R
2
+
R
3
∣
∣ ∣
∣
a
+
b
+
c
a
+
b
+
c
a
+
b
+
c
2
b
b
−
c
−
a
2
b
2
c
2
c
c
−
a
−
b
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
1
1
1
2
b
b
−
c
−
a
2
b
2
c
2
c
c
−
a
−
b
∣
∣ ∣
∣
c
2
⇒
c
2
−
c
1
;
c
3
⇒
c
3
−
c
1
=
(
a
+
b
+
c
)
∣
∣ ∣
∣
1
1
1
2
b
−
a
−
b
−
c
0
2
c
2
c
−
a
−
b
−
c
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
(
a
+
b
+
c
)
(
a
+
b
+
c
)
=
(
a
+
b
+
c
)
3
Suggest Corrections
1
Similar questions
Q.
Show that
∣
∣ ∣
∣
a
−
b
−
c
2
a
2
a
2
b
b
−
c
−
a
2
b
2
c
2
c
c
−
a
−
b
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
3
.
Q.
Using the properties of determinants, show that:
(i)
∣
∣ ∣
∣
a
−
b
−
c
2
a
2
a
2
b
b
−
c
−
a
2
b
2
c
2
c
c
−
a
−
b
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
2
(ii)
∣
∣ ∣
∣
x
+
y
+
2
z
x
y
z
y
+
z
+
2
x
y
z
x
z
+
x
+
2
y
∣
∣ ∣
∣
=
2
(
x
+
y
+
z
)
3
Q.
Prove that:
∣
∣ ∣
∣
a
−
b
−
c
2
a
2
a
2
b
b
−
c
−
a
2
b
2
c
2
c
c
−
a
−
b
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
3
Q.
Prove that
∣
∣ ∣
∣
a
−
b
−
c
2
a
2
a
2
b
b
−
c
−
a
2
b
2
c
2
c
c
−
a
−
b
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
3
Q.
Prove the following :
∣
∣ ∣
∣
a
−
b
−
c
2
a
2
a
2
b
b
−
c
−
a
2
b
2
c
2
c
c
−
a
−
b
∣
∣ ∣
∣
=
(
a
+
b
+
c
)
3
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Derivative Application
MATHEMATICS
Watch in App
Explore more
Derivative of a Determinant
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app