By using the properties of definite integrals, evaluate the integral ∫2π0cos5xdx
Open in App
Solution
Let I=∫2π0cos5xdx ........... (1) We know that, cos5(2π−x)=cos5x Also It is known that, ∫2a0f(x)dx=⎧⎨⎩2∫a0f(x)dx,iff(2a−x)=f(x)=0iff(2a−x)=−f(x) ∴I=∫2π0cos5xdx ⇒I=2∫π0cos5xdx=2(0)=0,[∵cos5(π−x)=−cos5x]