Let I=∫π20sin32xdxsin32x+cos32xdx .................(1)
⇒I=∫π20sin32(π2−x)sin32(π2−x)+cos32(π2−x)dx,(∵∫a0f(x)dx=∫a0f(a−x)dx)
⇒I=∫π20cos32xsin32x+cos32xdx ...........(2)
Adding (1) and (2), we obtain
2I=∫π20sin32x+cos32xsin32x+cos32xdx
⇒2I=∫π201⋅dx
⇒2I=[x]π20
⇒2I=π2⇒I=π4