wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using the properties of definite integrals, evaluate the integral π20sin32xdxsin32x+cos32x

Open in App
Solution

Let I=π20sin32xdxsin32x+cos32xdx .................(1)
I=π20sin32(π2x)sin32(π2x)+cos32(π2x)dx,(a0f(x)dx=a0f(ax)dx)
I=π20cos32xsin32x+cos32xdx ...........(2)
Adding (1) and (2), we obtain
2I=π20sin32x+cos32xsin32x+cos32xdx
2I=π201dx
2I=[x]π20
2I=π2I=π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon