Let I=∫π40log(1+tanx)dx .............. (1)
∴I=∫π40log[1+tan(π4−x)]dx,(∵∫a0f(x)dx=∫a0f(a−x)dx)
⇒I=∫π40log{1+tanπ4−tanx1+tanπ4tanx}dx
⇒I=∫π40log{1+1−tanx1+tanx}dx
⇒I=∫π40log2(1+tanx)dx
⇒I=∫π40log2dx−∫π40log(1+tanx)dx
⇒I=∫π40log2dx−I [From (1)]
⇒2I=[xlog2]π40
⇒2I=π4log2⇒I=π8log2