wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using the properties of definite integrals, evaluate the integral π40log(1+tanx)dx

Open in App
Solution

Let I=π40log(1+tanx)dx .............. (1)
I=π40log[1+tan(π4x)]dx,(a0f(x)dx=a0f(ax)dx)
I=π40log{1+tanπ4tanx1+tanπ4tanx}dx
I=π40log{1+1tanx1+tanx}dx
I=π40log2(1+tanx)dx
I=π40log2dxπ40log(1+tanx)dx
I=π40log2dxI [From (1)]
2I=[xlog2]π40
2I=π4log2I=π8log2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Continuous Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon