wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using the properties of definite integrals, evaluate the integral π0xdx1+sinx

Open in App
Solution

Let I=π0xdx1+sinx .........(1)
I=π0(πx)1+sin(πx)dx,(a0f(x)dx=a0f(ax)dx)
I=π0(πx)1+sinxdx ............. (2)
Adding (1) and (2), we obtain
2I=π0π1+sinxdx
2I=ππ0(1sinx)1+sinx)(1sinx)dx
2I=ππ01sinxcos2xdx
2I=ππ0{sec2xtanxsecx}dx
2I=π[tanxsecx]π0
2I=π[2]I=π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon