Let I=∫π20(2logsinx−logsin2x)dx
⇒I=∫π20{2logsinx−log(2sinxcosx)}dx
⇒I=∫π20{2logsinx−logsinx−logcosx−log2}dx
⇒I=∫π20{logsinx−logcosx−log2}dx ............ (1)
It is known that, (∫aof(x)dx=∫a0f(a−x)dx)
⇒I=∫π20{logcosx−logsinx−log2}dx ........... (2)
Adding (1) and (2), we obtain
2I=∫π20(−log2−log2)dx
⇒2I=−2log2∫π201⋅dx
I=−log2[π2]
⇒I=π2(−log2)
⇒I=π2[log12]
⇒I=π2log12