wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using the properties of definite integrals, evaluate the integral π20(2logsinxlogsin2x)dx

Open in App
Solution

Let I=π20(2logsinxlogsin2x)dx
I=π20{2logsinxlog(2sinxcosx)}dx
I=π20{2logsinxlogsinxlogcosxlog2}dx
I=π20{logsinxlogcosxlog2}dx ............ (1)
It is known that, (aof(x)dx=a0f(ax)dx)
I=π20{logcosxlogsinxlog2}dx ........... (2)
Adding (1) and (2), we obtain
2I=π20(log2log2)dx
2I=2log2π201dx
I=log2[π2]
I=π2(log2)
I=π2[log12]
I=π2log12

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon