Let I=∫π20cos5xsin5x+cos5xdx ............(1)
⇒I=∫π20cos5(π2−x)sin5(π2−x)+cos5(π2−x)dx ...(∵∫a0f(x)dx=∫a0f(a−x)dx)
⇒I=∫π20sin5xsin5x+cos5xdx .......... (2)
Adding (1) and (2), we obtain
2I=∫π20sin5x+cos5xsin5x+cos5xdx
⇒2I=∫π201⋅dx
⇒2I=[x]π20
⇒2I=π2⇒I=π4