By using the properties of definite integrals, evaluate the integral ∫5−5|x+2|dx
Open in App
Solution
Let I=∫5−5|x+2|dx It can be seen that (x+2)≤0 on [−5,−2] and (x+2)≥0 on [−2,5]. ∴I=∫−2−5−(x+2)dx+∫5−2(x+2)dx =−[x22+2x]−2−5+[x22+2x]5−2 =−[(−2)22+2(−2)−(−5)22−2(−5)]+[(5)22+2(5)−(−2)22−2(−2)] =−[2−4−252+10]+[252+10−2+4] =−2+4+252−10+252+10−2+4=29