By using the properties of definite integrals, Show that ∫a0f(x)g(x)dx=2∫a0f(x)dx, if f and g are defined as f(x)=f(a−x) and g(x)+g(a−x)=4
Open in App
Solution
Let I=∫a0f(x)g(x)dx ............ (1) ⇒I=∫a0f(a−x)g(a−x)dx,(∵∫a0f(x)dx=∫a0f(a−x)dx) ⇒I=∫a0f(x)g(a−x)dx ......... (2) Adding (1) and (2), we obtain 2I=∫a0{f(x)g(x)+f(x)g(a−x){dx ⇒2I=∫a0f(x){g(x)+g(a−x)}dx ⇒2I=∫a0f(x)×4dx using [g(x)+g(a−x)=4] ⇒I=2∫a0f(x)dx