wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

By using the properties of definite integrals, Show that a0f(x)g(x)dx=2a0f(x)dx, if f and g are defined as f(x)=f(ax) and g(x)+g(ax)=4

Open in App
Solution

Let I=a0f(x)g(x)dx ............ (1)
I=a0f(ax)g(ax)dx,(a0f(x)dx=a0f(ax)dx)
I=a0f(x)g(ax)dx ......... (2)
Adding (1) and (2), we obtain
2I=a0{f(x)g(x)+f(x)g(ax){dx
2I=a0f(x){g(x)+g(ax)}dx
2I=a0f(x)×4dx using [g(x)+g(ax)=4]
I=2a0f(x)dx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon