C0−C1+C2−C3+........+(−1)nCn is equal to
0
We know that
(1+x)n=nC0+nC1x+nC2x2+......+nCnxn
Putting x = -1, we get
(1−1)n = nC0 - nC1 + nC2 - .......(−1)n nCn
Therefore C0−C1+C2−C3+......(−1)nCn = 0