The correct option is
A True
C0,C1,C2 denotes coefficients expansion of (1+x)n then
C1+C1C2+C2C3+…+Cn−1Cn=2n!(n−1)!(n+1)!
we know that
(1+x)n=C0+C1x+C2x2+C3x3+⋯+Cn−2xn−2
+Cn−1xn−1+Cnxn
Also we can write it as
(1+x)n=Cnxn+Cn−1xn−1+⋯C2x2+C1x+C0
Multiplying these two expressions
(1+x)2n=(C0+C1x+C2x2+…+Cn−1xn−1+Cnxn)X
(Cnxn+Cn−1xn−1+…+C2x2+C1x+C0)
Now equate the coefficients of
xn−r from both sides of equations
We get
2nCn−r=C0Cn−r+C1Cn−r−1+C2Cn−r−2+C3Cn−r−3+…+Cn−rCn
Put r=1
C0C1+C1C2+C2C3+⋯+Cn−1Cn=2n!(n−1)!(n+1)!