wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Calculate x21x2+1dx1+x4.

Open in App
Solution

Given : (x21)(x2+1)dxx4+1
Let : x=tanθ
dx=sec2θdθdx1+x2=dθ(x21)(x2+1)dxx4+1=(tan2θ1)dθtan4θ+1
=(sin2θcos2θ)dθsin4θ+cos4θ=(cos2θsin2θ)dθ(sin2θ+cos2θ)22sinθcosθ=cos2θdθ112sin22θ=2cos2θdθ2sin22θ
Let : z=sin2θ
dz2=cos2θdθ22dz2z2=12dz(2)2z2=12sin1(z2)=12sin1(sin2θ2)=12sin1[2tanθ2(1+tan2θ)]=12sin1(2x1+x2)+C
Hence the correct answer is 12sin1(2x1+x2)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon